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ABSTRACT

Here a simple mathematical model for HIV/AIDS with standard inci-
dence is formulated and analyzed. It is assumed that only a fraction of
total HIV and AIDS infected are detected. So only this fraction of infec-
tives are subjected to proper counseling and are not taking part in the
hetero-sexual transmission of HIV/AIDS. The model is first analyzed by
considering the case detection parameters as constants. The basic repro-
duction number Ry of the model is computed and its relation with the
existence and stability of different equilibria of the model is investigated.
It is found that the disease-free equilibrium of the model is locally and
globally asymptotically stable for Ry < 1. When Ry > 1, the endemic
equilibrium exists and is locally and globally asymptotically stable un-
der some restriction on parameters. Next the optimal control problem is
formulated by considering case detection parameters as time dependent.
This problem is analyzed using Pontryagin’s maximum principle. Nu-
merical simulation is performed to show the impact of optimal control
and it is found that optimal control strategy gives a better result.
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1. Introduction

Although, more than 35 years have passed since the first HIV case was
identified in USA, still there is no cure for this disease. As per the Global Health
Observatory (GHO) data, an estimated 0.8% of the adult population of world
aged between 15 to 49 years are living with HIV. However the burden of this
epidemic varies considerably between countries and regions. The sub-saharan
Africa is badly affected followed by Americas, South-East Asia, Europe, Eastern
Mediterranean, Pacific countries WHO| (2015]).

It is an established fact that mathematical modeling helps in control and
prediction of an infectious disease. Although, there exist many mathematical
models which describes the transmission dynamics of HIV/AIDS, but because
the dynamics of HIV varies from one region to another depending upon infec-
tion prevalence, social and cultural environments, etc., the existing models do
have limitations in applicability of their results and selection of model parame-
ters. At present, different types of incidence functions are being used to model
different scenarios and the importance of different types of incidence functions
for HIV models is discussed in |Cai et al.| (2014])), Sharomi et al.| (2007). Here
in |Sharomi et al.| (2007), the vaccine-induced backward bifurcation is demon-
strated and in [Cai et al.| (2014) the resulting incidence term incorporates both
the bilinear and the standard incidence.

In the |Athithan and Ghosh| (2015), we have presented the simple mass ac-
tion model for HIV which is applicable for the region where HIV prevalence is
very high. Now, here in this paper, we are going to present an HIV model with
standard incidence which is suitable for the region where infection prevalence
of HIV/AIDS is moderate to low. The HIV/AIDS models with standard in-
cidence have been formulated and analyzed by some researchers (See |Cremin
et al.| (2013), Lima et al. (2008), Naresh et al.| (2006)), Nyabadza and Mukan-
davire| (2011]), [Sharomi et al.| (2008)) but not much emphasis has been given to
case detection and screening and HIV models which incorporate screening of
infectives followed a different modelling approach.

In this paper, first a simple mathematical model for HIV with standard
incidence is formulated and analyzed by considering a constant rate of case
detection. Later, an optimal control problem is formulated and analyzed by
considering the case detection parameter as the control parameter.
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This paper is organized as follows: Section [2] describes the basic model
and its formulation, Section [3] exhibits the existence of equilibria and stabil-
ity analysis with subsections as Basic Reproduction Number R, Existence of
Equilibria and Jacobian, Local Stability of Disease Free Equilibrium (DFE),
Local Stability of Endemic Equilibrium (EE) and Global Stability of DFE.
In Section [3.5] we present numerical computations to support our analytical
findings. Section [4] deals with the optimal control problem which contains the
optimal control model with subsections as Hamiltonian and Adjoint Equations,
and Optimal Control Theorems. Section [5| explores the numerical simulation
for the optimal control model and finally the results of our model are discussed
in detail in Section [6l

2. Model Formulation

The disease HIV/AIDS caused mainly by sexual transmission, so our pop-
ulation under consideration is only the adult population. We first divide the
whole adult population into three disjoint compartments: S(t), I (¢) and I5(?)
with N(t) = S(t) + I1(t) + I2(t) as total population. Here S(t), I1(t) and I»(¢)
denote the susceptible individuals, the HIV infectious individuals and the AIDS
infected individuals, respectively, at time ¢. The total population is assumed
to be variable and homogeneously mixed i.e., all are equally likely to acquire
infection by the infectious individuals in case they come into contact. The
fraction of total HIV and AIDS infectives who are detected are given by n and
v respectively. Further it is assumed that the rate of transmission of HIV due
to detected group of infected individuals will be less compared to rate of trans-
mission due to undetected group of infected individuals. Let 7 be the rate of
treatment in HIV class. By these assumptions the individuals who are either
undetected or untreated will progress to AIDS class fast compared to those
HIV infectives who are opting for treatment.

A

Recruitment

Susceptible S
Peoples class S H

Fey S L+ koSt
[HIV Infectives Class 11] (4 ) 14
ksl
AP l (e o) Io

Figure 1: Transfer diagram of the model

Malaysian Journal of Mathematical Sciences 325



Athithan, S. and Ghosh, M.

The transfer diagram of our proposed model is presented in Fig. [I Based
on above assumptions, we formulate our mathematical model as follows:

B o= A-us- (akekh)s
D = (kR 4+ ko R2) S — (u+ ) — ks, (1)
G = ksl — (u+ po)lo,

where k1 = a1[n+ ¥1(1 —n)], k2 = ao[v+¢2(1 —v)] and ks = 017 + o2[(1 —
m)n+ (1 —=n)]

The parameters used in the model are described in Table

Table 1: Description of parameters

Parameter Description

A Recruitment rate

I Natural death rate

n Fraction of total HIV infectives, who are detected

v Fraction of total individuals with AIDS, who are detected
o Rate of transmission(in HIV class)

Qo Rate of transmission(in AIDS class)

1, W Modification parameters

T Rate of treatment

o1 Rate of progression to AIDS(detected & treated)

fop) Rate of progression to AIDS(undetected & untreated)
1 Death rate due to HIV infection

142 Death rate due to AIDS

As N(t) = S(t) + I1(t) + I2(t), for the analysis purpose we consider the
following system:

% = A—uN —puily — pols,
G = (ak+hk)S—(u+mh— kb, @)
e = ksl — (u+ po)lo,

Here S > 0,1; > 0,15 > 0. Model systems and are involving human
population, hence all the variables and parameters of the proposed model are
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positive. The region of attraction of the model is given by

A
Q:{(S;I1,12)€Ri.s+jl+I2:N<M}'

We now show the positive invariance of 2. We have N(t) = S(¢) + I, (t) +
I5(t). The rate of change of the total population under consideration is given
by adding all the equations in the and is given by:

dN

— = A—uN — pu1I; — pol.
dt H p1ly — p2d2

Clearly whenever N > %, % < 0. Note that ‘% is bounded by A — uN.

By using standard comparison theorem |Lakshmikantham et al.| (1989) it can
be shown that 0 < N(t) < %(1 — e M) + N(0)e~#t. In particular, N(t) < %
if N(0) < % Hence, the region Q = {(S, Ii,I,) € R} : N < %} is positively
invariant for the system .

Now we prove that all the variables of the model are non-negative. This
confirms that the solution of the system with positive initial conditions remains
positive for all ¢ > 0. The fact is described in the following lemma.

Lemma 2.1. If S(0) > 0, I,(0) > 0, I2(0) > 0, the solutions S(t),I1(t) and
I1(t) of the system are positive for all t > 0.

Proof. Assume that N(¢) # 0V ¢ > 0. We prove this lemma by using a
contradiction.
We assume that there exists a first time ¢; such that:

St =0, &

i (tl) <0, Il(t)ZO, Ig(t)ZO, 0<t<t (3)

there exists a first time ¢5 such that:

dI
“L(ty) <0, S(t) >0, Li(t) >0, 0<t <ty (4)

I (ty) =
1(t2) = 0, 7

there exists a first time t3 such that:

dly

I5(t3) =0, —
2(13) -

(t3) <0, S(t) >0, I1(t) >0, 0<t <t3 (5)
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From %(tl) =A > 0, which is a contradiction to our assumption
43 (1) < 0 and meaning that 93(t) > 0, ¢ > 0.

From . dll = ko I2(t2()t52 gtg) = ko ;(275(:)2_&532)) > 0 and not negative, which

is again a contradlctlon to our assumption dll +(t2) < 0 and meaning that
() >0, t>0.

From (| . dlz (t3) = k3I1(t3) > 0 which is again a contradiction to our assump-
tion @(tg) < 0 and meaning that ””f( )>0,t>0.

Hence we conclude that I5(t) > 0 for ¢ > 0. Thus the solutions S(t), I1 (¢), I2(t)
of the system remain positive for all ¢ > 0. O

3. Equilibria and Stability Analysis

3.1 Basic Reproduction Number R,

The basic reproduction number is defined as the average number of sec-
ondary cases generated by an infected individual in his/her whole infectious
period in a fully susceptible population. We follow the method described in
Driessche and Watmough| (2002) and compute the basic reproduction num-
ber (Rg). Using the same notation as in [Driessche and Watmough/ (2002)) the
matrices F and V are given by

F_ (/ﬁjﬁl—i-kn%) (N-I - 1) v — (4 p1 + ks)
0 ’ —k3ly + (p+ p2)la)
Now, the matrices F' and V evaluated at disease-free equilibrium point are
given by
ki ko A pr + k3 0
F= = .
( 0 0 > v < —ks o+ 2

The Next Generation matrix FV ™! is given by

[ k1 + kaks ] ko
vl = (p+p1+ks) (p+p2) (ptpr+ks) (u+p2) | .
0 0

So, the reproduction number Ry which is the spectral radius of the matrix
FV~! is given by
kq n koks
(bt pa+ks)  (p+ p2)(p+ pa + ks)

Ry =
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The reproduction number Ry gives the average number of infected humans
generated by one typical infected human in a fully susceptible population.

3.2 Existence of Equilibria and Jacobian

The equilibria for our model are determined by setting right hand side of
the model to zero. The system has the following equilibria namely Dis-

ease Free Equilibrium (DFE) E; (N°,19,19) = (%,0,0) and Endemic Equi-
librium (EE) Eo (N*, I, I3), where

A — g IF — pol% k
N* — Hily — M2 2’ E:( 3
7 Mot 2

) I = kqIy
and I is given by

A[(k1 + kaka) — (1 + p1 + k3)]
(k1 + koka) [p + pa (e + p2)ka] — (1 + poka) (e + p1 + k)
ARy — 1)
(k1 + koka) — (1 + pi2ka)
as Ry > 1 = (k1 + koks) > (0 + p1 + k3)

ice. (ki +koka) > p+ p1 + ka(p+ p2) = p+ (pa + paka) + piky
= (k1 + koks) > (p1 + poks).

Iy =

> 0,

—p =1 —p2
The Jacobian matrix for the system isgivenby M = | as1 a2  aos
0 azx ass

where
12 I 2
az = k’1 + (k1 + k2) L 2+/€2

2N11—Il2 12 N -1

a2 = ki—ki|—Hm— | ~k|m + (k1 + k2) 1o N7
_</’L+M1+k3)7

—I? ONI, — I? N — I
a3 = k‘g——]{il l:]Vleil —k |: ]32 2:| (k1—|—k2)11|: N2 2:|’
aza = k3, azz=—(u+ p2).
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3.3 Local Stability of DFE

Theorem 3.1. The Disease Free Equilibrium E; is locally asymptotically stable
provided Ry < 1.

Proof. The Jacobian matrix for the system at DFE Ejis given by

—H —H1 —H2
M= 0 ki—(p+p+ks) ko
0 k3 —(p+ p2)

Clearly —pu is one of the eigenvalue of M°. The other two eigenvalues are
computed from the matrix

<k1—(u+u1+k33) ks )
k3 —(u+p2))”

The characteristic polynomial of this matrix is given by
A+ A+ hy =0,

where hqy = —[k1 — (u+p1+ks) — (p+pe2)] and he = — (k1 — (u+p1 +k3)) (n+
[JJQ) — ]{32]{3.

By Routh-Hurwitz criteria the DFE F; is locally asymptotically stable when
h1, ha > 0. Now

k1

h - -
! (14 p1 + k3)

1] Gt )

koks
(e p2) (e + p1 + ks

(p =4 pa + k3) [—

(u+m+k3){(—Ro+1)+ )}+(u+u2)>o
when Ry < 1.
Further,

he = —(k1— (p+ p1+ k3))(p+ p2) — koks
kl k‘gkg
+ + k + — — +1
(g k) NQ)[ (n+pa+ks) (ot p2)(p+ pr + k3)

= (p+mpm+k3)(p+p2)[l — Ro] >0

only when Ry < 1.

Hence the Disease Free Equilibrium E; is locally asymptotically stable pro-
vided Ry < 1. O
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3.4 Local Stability of EE

Theorem 3.2. The Endemic Equilibrium E5 is locally asymptotically stable
when 2p + o > bao, [phzbas + p1(p 4 po)bar] > [k3pabor + p(p + p2)bos] and
{20+ po — baa} x {[pabar + p(p + p2)] — (20 + p2)bag — ksbas} > {uksbas +
pa (g + p2)bor — kapobor — p(p + pi2)baz}.

Proof. The Jacobian matrix for the system at EE Es is given by
N —p = —p2

M*= | If ba b2 bos
I3 0 b3 bs3

where
I*Q I I* I*2
by = klﬁ + (k1 + kZ)ﬁ + kQﬁ’
OIN*IF — It -1z L[Nt -1
bos = ki—Fk l]\}ﬂl] — k2 [Ni + (kl +k2)12 [ N*2 1]
_(M + ﬂl + k3)a

-1 ON*I; — I N* — I}
bos = ko — —k [Ng ko [ J\f’*2 2|+ (b + ko) I} [N*Q 2} ;
bso = ki, b3z = —(p+ p2).

The eigenvalues of this Jacobian matrix are given by the roots of the fol-
lowing cubic equation in A: A% 4 g1 A2+ go A + g3 = 0 which is the characteristic
equation of the Jacobian matrix M™*, where

g1 = —[=p+ by +b3s] =2+ pp — by >0 if boy <O,
g = | T bao ba3 — — 1
bar b2 ks —(p+ p2) 0 —(u+p2)

= [mbar + p(p + p2)] — (2p + p2)boz — ksbos

v o )

= pksbog + p1(p + p2)bor — kspobar — p(p + p2)baa.

—H1 — M1
bar a3

- —H1
bar 22

— (p+ p2)
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By Routh-Hurwitz criteria the EE FEj is locally asymptotically stable when
g1, g3 > 0 and g192 > gs.
i.e. The EE E» is locally asymptotically stable when 2u 4 ug > baa, [1tksbas +
pi(p 4 p2)bar] > [kapabar + p(pe + p2)boe] and {2p + po — bas} X {[n1b21 +
p(p A+ p2)] — (2p+ p2)bag — kzbaz} > {puksbas 4 puy (o + p12)bar — kzpuabar — pu(p+
M2)522}- O

3.5 Global Stability of DFE

Theorem 3.3. The disease-free equilibrium FEy of the model is globally
asymptotically stable if Rg < 1.

Proof. We can prove the global stability of the DFE using the comparison the-
orem(see Ref. [Lakshmikantham et al.| (1989), p. 31). Re-writing the equations
for the infected compartments in , we have

G I Ule) (i I + ko )
=(F-V —

o=e-n( ) 0

dt

I I
where F and V are as defined in Section Since 1; 2 (k1(I1 + koI2) > 0
for all ¢ > 0, it follows that

dar,
dt

y )= (n)

dt

Since the eigenvalues of the matrix F' —V all have negative real parts (this
comes from the local stability results in Lemma 1 in [Driessche and Watmough
(2002)), then system is stable whenever Ry < 1. So, (I1,1I2) —(0, 0) as
t — oo. By the comparison theorem, it follows that (I1,l3) — (0,0) and
S — % and as t — co. Then (S,I1,l2) — E; as t — 0. i.e. Ejp is globally
asymptotically stable for Ry < 1 when 5 = 0. O

In this section we visualized our analytic result through numerical simula-
tion. The system is simulated for various set of parameters. To see the
dynamic behavior of the model for disease-free equilibria the system is inte-
grated numerically by fourth order Runge-Kutta method. We consider the
parameter set given in Table 2] Here all the parameters are per day.
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For the parameter set given in the table, the system has only the disease-
free equilibrium E; and it is locally asymptotically stable (see Fig. . Again
for the parameter set given in the table except for u; = 0.2, the system has
two equilibria the disease-free equilibrium and the endemic equilibrium. Here
the disease-free equilibrium F; is unstable and the endemic equilibrium Fs is
locally asymptotically stable (see Fig. [3)).

This fact is more clear from the Fig. [d] where phase portrait in S —I; — I
are shown for different set of initial conditions. Figs. explore the relation
between Ry with other parameters. In Fig. [5] we see the relation between Ry, 7
and v. From this figure it is clear that increase in detection parameters causes
decrease in Ry. In Fig. [6] we see the relation between Ry, 1 and 5. So if these
modification parameters are increasing then there is an increase in the value of
basic reproduction number causing elimination of disease almost impossible.

In Fig. m we see the relation between Ry, o1 and o9. Here too increase in
o1 and o causes increase in basic reproduction number. Fig. [§]is reflecting the
relation between Ry , a; and as. As expected increase in rates of transmission
a1 and a causes increase in Ry. So our aim should be to manipulate these
parameters using different control strategies such that the value of the basic
reproduction number Ry can be made less than one. This will lead to DFE
to be globally stable causing the complete elimination of the disease from the
population.

10000
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8000

7000

6000

5000 —_—,
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4000
3000

2000

1000\

00 50 100 150 200
Time (in days)

Figure 2: Variation of N, Iy, I> with time showing the stability of disease-free equilibrium (when
Rp = 0.8956 < 1) for the parameter values are given in Table
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Figure 3: Variation of N, I;, I with time showing the stability of endemic equilibrium (when
Rp = 1.1478 > 1) for the parameter values are given in Tableexcept pn1 =0.2

6000

Figure 4: N — I} — I> phase plot showing the stability of the EE for Ry > 1

Figure 5: Variation of Ry with v and n showing the impact of n and v on Rg
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Figure 6: Variation of Ry with 11 and 1o showing the impact of ¥ and 2 on Rg

Figure 7: Variation of Rg with o1 and o2 showing the impact of o1 and o3 on R

Figure 8: Variation of Ry with a1 and a2 showing the impact of a3 and as on Ry
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4. Optimal Control Problem

In the preceding model with detection, we considered the fixed value of the
detection parameter throughout the analysis. But in reality these parameters
may be dependent on time. Therefore we used the detection parameters related
to HIV and AIDS classes as time dependent parameters and we study the
optimal control over the detection parameters. Through this study we develop
a strategy through the objective function for minimizing the cost as well as the
number of infectives. We use Pontryagin’s Maximum Principle (see Bartl et al.
(2010)), [Kar et al.| (2012), Kar and Ghosh| (2012])), [Zaman et al| (2008), etc.) to
accomplish our aim. The optimal control system with the objective functional
is given below:

95 = A —pS+ (k)R + ka(t)2) S,
= ()% +ka(t)R) S — (n+ m + k(D) (6)
92 = k() — (p+ p2)la,

where

N = S+ +1D,

ki(t) = ain@) +¢1(1 =) = ax[(1 = ¥1)n(t) + ],

ko(t) = oo[v(t) + ¢l — v(t)] = a2[(1 — ¥2)v(t) + 2],

k3(t) = {oimn(t) + o2[(1 = 7)n(t) + (1 —n()]} = o17n(t) + o2[1 — ()]

m™(t)[o1 — 03] + 09.

We formulate an optimal control problem with the objective (cost) functional
given by

T
1 1
J = / (01[1 + 0212 + 5037’]2 + §O4V2)dt. (7)
0

subject to the state system given by @ Our objective is to find a control n*
and v* such that J(n*,v*) = n’rlljligﬂ J(n; V), where Q = {n, v: measur-
able and 0 < n(t), v(t) <1 for t € [0,¢1]} is the set for the controls.

Here, the value n(t) = 1, v(t) = 1 represents the maximal control of de-
tection on HIV and AIDS class respectively. The quantities Cy, Cy, C3 and
Cy represent, respectively, the weight constants. The terms C3n? and Cyv?
describe the cost associated with detection control on HIV and AIDS class
respectively.
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4.1 Hamiltonian and Adjoint Equations
The Lagrangian of this problem is given by
L(S, I, Iz,n,v) = C1I1 + Caly + %OgnQ + %CM (8)
Next we form the Hamiltonian H for our problem as follows:

H(S, Iy, Io,n,v) = L(S, L, Ioyn,v) + M9 + 0t + %5 (9)

where \;, i = 1, 2, 3 are the adjoint variables or the co-state variables and can
be determined by solving the following system of differential equations:

dx S4I1415)1—51
= —% A1 {#+ (k111 + kol2) [7( 4(—5{:;11)12)2 ]}

(il +kelo) |

G =-3 ~C1 = { k1S [ | + ke (e )

A2 {’“S [(sfrffmﬁ] — k2 [<S+Ilfi12>2] —(utm +k3)} (10)

—Asks,

@@=t = —Ce-n{h[erine] - kS (e}

—A2 {—kl [ﬁ] + koS [(Sﬁ%ﬁ] } + A3+ p2),

Let S Il, Ig and N be the optimum value of S, I, I and N. Also let
{/\1, )\2, )\3} be the solutions of the system (|1

4.2 Optimal Control Theorems

We now state and prove the following theorem by following|Lukes (1982)and
Zaman et al.| (2008).

Theorem 4.1. There exists optimal controls n*,v* € Q such that
T v =, man g J(0,v)

subject to the system (@

Proof. This theorem is proved using [Lukes| (1982). It is easy to see that all the
control and the state variables are nonnegative. Also the necessary convexity
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of our objective functional in n and v is satisfied for this minimizing problem.
The control variable set , v € 2 is also closed and convex by definition. The
boundedness of the optimal system determines the compactness required for
the existence of the optimal control. In addition, the integrand in the functional
, Ci1Iy + CyI5 + %03772 + %C'4u2 is convex on the control set Q and also the
state variables are bounded. This proves the theorem. O

As there exists an optimal control for minimizing the functional subject to
equations @ and , the Pontryagin’s Maximum Principle is used to obtain
the necessary conditions to get the optimal solution as follows:

Let (x,u) is an optimal solution of an optimal control problem. Then there ex-

ists a non trivial vector function A = (A1, Ag, ........ , A\n) satisfying the following
equalities.
dzx _ OH (t,x,u,\)
dat T ) )
OH (t,w,u,\
0 = 2HEzud) (11)
d\ _ OH (t,z,u,\)
dat T ox '

By using the Pontryagin’s Maximum Principle Pontryagin et al.| (1962) and
the theorem (4.1)) we are going to state and prove the below theorem.

Theorem 4.2. The optimal controls n*,v* minimizes J over the region €1
given by

n* = mazx{0,min(n,1)} and
v* = maz{0,min(v,1)}
where
n = 61,3{(Xl—XQ)(l—Tﬁl)alI]%g+(X2—X3)(U1—U2)Tﬂ}7
N 1 [~ = LS
7 Ch {()\1 A2) (1 —1ha)an < }

Proof. Using the optimality conditions

OH OH
— =0 d — =0
an e
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we get

— CLS {(Xl —X)(1— wl)al% + (A2 = As)(o1 — 02)7'11} (=),
v = Ciz; {(Xl - X2)(1 - ¢2)a21]2§g} (=7).

These controls are bounded with upper and lower bounds as 0 and 1 respec-
tively. i.e. n=0ifp<O0andnp=1ifg>1landv=0ifv<0Oandv =1if
v > 1, otherwise n = 77 and v = . Hence for this controls (n*) and (v*) we
get the optimum value of the functional J given by equation . Hence the
theorem. O

5. Numerical Simulation of the Optimal
Control Model

To exhibit the effect of optimal control, we performed the numerical simula-
tion in this section. The control profile is applied for the period of 100 days. As
discussed in |Athithan and Ghosh| (2015]), here too we assume that the weight
associated with detection in HIV class (C3) is greater than or equal to the
weight associated with detection in AIDS class (Cy). The optimality system
in Section [4]is solved by iterative method (see|Jung et al.| (2002), Lenhart and
Workman| (2007), etc.). At first we solve the state equations by the forward
Euler method for the time interval [0, 1000] starting with an initial guess for the
adjoint variables. Then we solve the adjoint variables in the same time interval
by using the obtained solutions of the state variables and the transversality
conditions backward in time. The following set of parameters is considered to
simulate the optimal control model:

A =200, = 0.02,a1 = 0.25, 00 = 0.32,7 = 0.8, 1 = 0.1,

09 = 015,”1 = 0.2,/.1,2 = 0.5,’(#1 = 1.4,1&2 =1.9.

The weight constants C; and Cy are taken as 1 and C3 and Cy are varied.
From Figs. [ and it is easy to observe that the controls take their highest
value 1 in starting period and after some period of time (nearly at the end
of optimal strategic time period) the control parameter values are toned down
slowly and finally comes to the 0 level. Fig. [0] shows that the HIV detection
rate should be maintained according to the cost applied on detecting HIV and
AIDS patients over the period of control. Figs. are showing the effects
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of the costs C3 and Cy on effective control profiles of n and v. Figs. [T4HI6]
are showing the plots of adjoint variables. It is evident from the figures
that the optimal control strategy gives the better result than the fixed control
effort. It is observed that in the case of optimal control, number of susceptible
individuals starts increasing and the number of HIV and AIDS infectives start
decreasing.

These facts are evidently showing that the optimal control program is to

be conducted to detect the maximum number of infectives and to decrease the
infection prevalence of HIV and AIDS infected population.

1
(C3<05.20, C,=10,35)

09 F B

08 u

06 (C,=10,C,=05

Control Profile 1,

0 L L L L L L L L L
0 100 200 300 400 500 600 700 800 900 1000

Time(in days)

Figure 9: The control profile of n of the intervention strategies for different values of Cs and Cj.

Control Profile

. . . . . . . . .
0 100 200 300 400 500 600 700 800 900 1000
Time(in days)

Figure 10: The control profile of v of the intervention strategies for different values of C3 and Cy.
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Figure 11: The control profiles of 7 and v of the intervention strategies for the values Cs = 10 and
C4 =5.
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Figure 12: The control profiles of n and v of the intervention strategies for the values C3 = 20 and
Cy = 35.
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Figure 13: The control profiles of n and v of the intervention strategies for the values C3 = 35 and
C4 = 50.
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Figure 14: Simulation results showing the effect of control measures on adjoint variables (shadow
price) for C3 = 10 and C4 = 5.
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Figure 15: Simulation results showing the effect of control measures on adjoint variables (shadow
price) for C3 = 20 and C4 = 35.
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Figure 16: Simulation results showing the effect of control measures on adjoint variables (shadow
price) for C3 = 35 and Cy = 50.
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Figure 17: Variation of S with time for different levels of fixed controls and optimal control.
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Figure 18: Variation of I; with time for different levels of fixed controls and optimal control.
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Figure 19: Variation of I with time for different levels of fixed controls and optimal control.
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6. Conclusion

Here an HIV/AIDS model with standard incidence is proposed and ana-
lyzed to exhibit the effects of case detection and treatment. The expression for
the basic reproduction number R, is obtained and its relationship with other
parameters are explored graphically. Equilibria of the model are found and
their local and global stabilities are discussed in detail. It is observed that two
nonnegative equilibria are possible for the system (I): the disease-free (E1)
which always exists and the endemic equilibrium (E2) which exists only for
Ry > 1. Tt has been proved that the disease-free equilibrium is globally stable
when Ry < 1. The endemic equilibrium is locally asymptotically stable under
some restriction on parameters.

Further, the proposed basic model is converted to an optimal control prob-
lem to know the dynamics of the disease when the control parameters become
time dependent. The control profile for the detection parameters are obtained
and the effect of optimal control on infectives are demonstrated using numeri-
cal simulation. The results of our simulation confirm that the optimal control
strategies is better than fixed control as it helps in decreasing the number of
infectives significantly in a specified interval of time.
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